翻訳と辞書
Words near each other
・ Henschel Hs 293
・ Henschel Hs 294
・ Henschel Hs 297
・ Henschel Hs 298
・ Henschel Quartet
・ Henschel-BBC DE2500
・ Henschel-Wegmann Train
・ Henschke
・ Henschleben
・ Henschtal
・ Hensel
・ Hensel Formation
・ Hensel Phelps Construction
・ Hensel Sand
・ Hensel's lemma
Henselian ring
・ Hensfoot, New Jersey
・ Henshall
・ Henshaw
・ Henshaw (surname)
・ Henshaw, Northumberland
・ Henshaws Society for Blind People
・ Hensies
・ Hensim
・ Hensingersville, Pennsylvania
・ Hensingham
・ Hensleigh House
・ Hensleigh Wedgwood
・ Hensler, North Dakota
・ Hensley


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Henselian ring : ウィキペディア英語版
Henselian ring
In mathematics, a Henselian ring (or Hensel ring) is a local ring in which Hensel's lemma holds. They were introduced by , who named them after Kurt Hensel. Azumaya originally allowed Henselian rings to be non-commutative, but most authors now restrict them to be commutative.
Some standard references for Hensel rings are , , and .
==Definitions==
In this article rings will be assumed to be commutative, though there is also a theory of non-commutative Henselian rings.
A local ring ''R'' with maximal ideal ''m'' is called Henselian if Hensel's lemma holds. This means that if ''P'' is a monic polynomial in ''R''(), then any factorization of its image ''P'' in (''R''/''m'')() into a product of coprime monic polynomials can be lifted to a factorization in ''R''().
A local ring is Henselian if and only if every finite ring extension is a product of local rings.
A Henselian local ring is called strictly Henselian if its residue field is separably closed.
A field with valuation is said to be Henselian if its valuation ring is Henselian.
A ring is called Henselian if it is a direct product of a finite number of Henselian local rings.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Henselian ring」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.